1

Ensemble des solutions parcimonieuses exactes en démélange spectral : algorithme garanti et analyse des solutions

We focus on the exact resolution of sparse spectral unmixing problems, that is, the search for cardinality-limited linear least squares solutions under non-negativity and sum-to-one constraints. The originality of the proposed method - for which the Python code is provided - lies in its multisolution nature; we return the set of supports that yield the best solutions. The method is tested on synthetic data, with promising results.

Branch-and-bound algorithm for exact ℓ0-norm sparse spectral unmixing

We propose an algorithm that exactly solves the cardinality-constrained sparse spectral unmixing problem.

Reconstruction multiclasse pour l'imagerie TEP 3-photons

Dans cette contribution, nous abordons le problème de reconstruction d’image de distribution radioactive pour lequel l’information disponible provient de plusieurs classes de données distinctes, chacune associée à une combinaison spécifique de détections.

Multi-class maximum likelihood expectation-maximization list-mode image reconstruction, an application to three-gamma imaging

Our contribution focuses at improving the image reconstruction process for specific Compton imaging systems able to detect multiple classes of events, in the field of nuclear imaging.