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XEnon Medical Imaging System (XEMIS)

Project start-up: 2004 by XENON team - SUBATECH laboratory (France).

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe);
Based on the three-photon imaging technique (3γ)

Three-phased project:
XEMIS1: Development of the LXe Compton telescope

prototype;
XEMIS2: LXe pre-clinical camera for rodents total-body

imaging;
XEMIS3: LXe clinical camera for total-body imaging.

Efforts are spent in experimental design of the camera.
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Statistical model

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction ≡ inverse problem

Given the measured coincidences: y := (yib)i∈J1,IK,b∈J1,BK ;
Estimate the radioactive density: λ := (λj)j∈J1,JK .

Direct model
yib are i.i.d. s.t.

yib ∼ P (yib) ∀i ∈ J1, IK, ∀b ∈ J1, BK

yib :=
∑

j∈J1,JK
Aibjλj + sib + ri

Complex problem

⇒ Large dimensions of A;
⇒ Noisy measurement vector y;
⇒ Small perturbation in projection space⇝ Large error in image
space.

Notations - Cherry et al. [2012]
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Maximum-Likelihood Expectation-Maximization for PET -Vardi et al. [1985], Lange et al. [1984]

λ̂
ML

= argmax
λ∈RJ

+

(log(L(λ|y)))

MLEM algorithm1:

Determine λ̂
ML

for a probabilistic model depending on latent data;

Likelihood update equations:
λ(0) = λ

(0)
j > 0

λ
(t+1)
j = λ

(t)
j ×

1∑
i∈J1,IK
b∈J1,BK

Aibj

∑
i∈J1,IK
b∈J1,BK

Aibj
yib∑

j′∈J1,JK Aibj′ λ
(t)
j′ + sib + ri

∀j ∈ J1, JK

Properties:

• The MLEM converges to a λ̂
ML

;
• The densities (λj) are non-negative.
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List-Mode MLEM - Parra and Barrett [1998]

λ̂
ML

= argmax
λ∈RJ

+

(log(L(λ|y)))

LM-MLEM algorithm:

Determine λ̂
ML

for a model depending on latent data with the only detected events1 stored in a list L;

Likelihood update equations:
where yib ∈ {0, 1} ∀i ∈ J1, IK, b ∈ J1, BK and N := Card(L)

Further properties:
• Each event can be treated as a point in a continuous measurement space;

⇒ No discretization of data⇝ preserve accuracy of measurement.
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XEMIS2 camera & 3γ imaging

XEMIS2
A monolithic, cylindrical & total-body Compton camera:

Scandium-44: (β+, γ) radionuclide:

44
21Sc β+

−−−→
94.27%

44
20Ca∗ + νe + e

+

44
20Ca∗ γ−−→

blabl

44
20Ca + γ

with E0 = 1.157MeV.

Assumptions
Let M be a decay source

⇒ Compton cone:
Apex: V1 ;
Axis: ∆ =

−−−→
V2V1 ;

Angle: θ = arccos
(

1 − mec2E1
E0(E0−E1)

)
;

Property: M lies on the Cone-Surface Response (CSR).

LXe active zone: 24cm in length, 7cm (resp. 19cm) of
inner (resp. outer) radius.

Opportunity: LOR/CSR intersection;
Challenge: Reconstruct the image from a continuous 3γ signal.
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+
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blabl

44
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with E0 = 1.157MeV.
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Let M be a decay source ⇒ Compton cone:
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Axis: ∆ =
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V2V1 ;
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E0(E0−E1)

)
;

Property: M lies on the Cone-Surface Response (CSR).
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State of the art: Image Reconstruction for 3γ PET Imaging - Giovagnoli et al. [2021]

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:
Transform information from 3rd γ into a TOF information ⇒ N (v, σ2)

v : LOR/CSR Intersection (LCI);
σ : pseudo-TOF standard deviation.

Assumptions :

• σ is fixed whatever the orientation of the γ wrt. the LOR;

• Virtual discretization of the continuous detector;
• Only 3γ events are taken into account.

Proportions of events:

3γ ∼ 10% , 2γ ∼ 50%, 1γ ∼ 40%
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Our approach

3γ ∼ 10% , 2γ ∼ 50%, 1γ ∼ 40%

Purpose of my PhD thesis

Design and implementation of reconstruction algorithms for the 3γ imaging provided by the XEMIS2 camera.

Our methodology

• Derivation of a LM-MLEM algorithm taking into account

• the continuous aspect of the LXe detection space
• handling the all types of events i.e. 1γ, 2γ or 3γ
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Continuous LM-MLEM

Reformulation of the LM-MLEM in the continuous space :

where

δ: integration variable associated to an event;

L: detection domain given by:
1γ: a CSR with E0 = 511keV

or a CSR with E0 = 1.157MeV
2γ: a LOR i.e. 2 × E0 = 511keV

or a 2 CSR intersection with E0 = 511keV & E0 = 1.157MeV
3γ: a combination of independent LOR & CSR.

So: there are 5 types of events to consider!
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Sensitivity calculation

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E0 photon belonging to the voxel j in the FOV

2γ Annihilation caseM.Latif | Workshop EmiLy 2022 9



Sensitivity calculation

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E0 photon belonging to the voxel j in the FOV

1γ case with incident energy E0
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Sensitivity calculation
Let M be an emission point of a E0 photon belonging to the voxel j in the FOV:

s2γ (M) :=

∫ π

θ=0

∫ π
2

φ=0

pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, I1)2 − Õ P 2 − Q

))
× pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, J2)2 − Õ P 2 − Q

))
dφ

+

∫ 0

φ=− π
2

pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, I2)2 − Õ P 2 − Q

))
× pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, J1)2 − Õ P 2 − Q

))
dφdθ

Õ P := sin(θ) Õ M, Q :=
√

R2
1 − Õ P 2.

s1γ (M) :=

∫ 2π

θ=0

[∫ π
2

φ=0

∫ R
1γ
out(φ,I1)

v=Rin

h(φ, θ, v)dvdφ +

∫ π

φ= π
2

∫ R
1γ
out(φ,J1)

v=Rin

h(φ, θ, v)dvdφ

+

∫ 0

φ=− π
2

∫ R
1γ
out(φ,I2)

v=Rin

h(φ, θ, v)dvdφ +

∫ − π
2

φ=−π

∫ R
1γ
out(φ,J2)

v=Rin

h(φ, θ, v)dvdφ

]
dθ

with h(φ, θ, v) := f(φ, θ, v) × C(v, θ, φ)

f(φ, θ, v) := pi

(
1

| cos(φ)|

(√
v2 − sin2(θ) Õ M2 −

√
2

Rin − sin2(θ) Õ M2

))
C(v, θ, φ) :=

∫ π

β=−π

K(β|E0)

∫ 2π

ω=0

∫ ρmax(v,θ,φ,β,ω)

ρ=0

p
′
i

(
∥−−−→

V1V2∥2
)

dβdωdρ
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CASToR & POLLUX

Algorithm implementation: using CASToR1 framework - Merlin et al. [2018];

For the time being
CASToR is implemented for standard PET camera:

• discrete detectors;
• LOR events.

Upgrading Castor
We have to extend CASToR with:

• continuous detection space capability with associated sensitivity computation;
• a CSR projector e.g. Ellipse-stacking method or Ray-tracing method2 ;
• new types of events including 1γ for Compton imaging and 3γ.

⇒ Some data are required!

Hello POLLUX!
A simple home-made Monte Carlo simulator based on ray-tracing techniques with some physical
considerations e.g. positron range, mean free path, photon cross section, …

1Customizable and Advanced Software for Tomographic Reconstruction
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POLLUX - 2γ LOR case

Voxel size: 4 × 4 × 4 mm3

Image size: 96 × 96 × 120 mm3

Total number of voxel: J = 17280

LXe active zone:
• 24cm in length;

• 7cm (resp. 19cm) of inner (resp. outer) radius.
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POLLUX - 2γ LOR case

Voxel size: 4 × 4 × 4 mm3

Image size: 96 × 96 × 120 mm3

Total number of voxel: J = 17280

Positron range: ∼ N (µ, 2) with µ = 2.4 1 ;

LXe Density: ρ ≈ 3.06 g.cm−3 ;

Attenuation coeff.: µ ≈ 0.291 cm−1 at 511keV.
1Source: Giovagnoli et al. [2021]
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POLLUX - 2γ LOR case

Voxel size: 4 × 4 × 4 mm3

Image size: 96 × 96 × 120 mm3

Total number of voxel: J = 17280
Repeat N times e.g. N = 200
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POLLUX - 2γ LOR case

Voxel size: 4 × 4 × 4 mm3

Image size: 96 × 96 × 120 mm3

Total number of voxel: J = 17280
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Voxel size: 4 × 4 × 4 mm3

Image size: 96 × 96 × 120 mm3

Total number of voxel: J = 17280
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Next steps:

Sensitivity calculation:

⇒ Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASToR.

Continuous LM-MLEM :
Consider the 5 types of events in the reconstruction method;

⇒ Derivation of the maximum likelihood equation for the cases 1, 2, 3γ;

Design of the dedicated algorithm and implementation in CASToR framework;
Assessment of the algorithm with simulated1 and real data.
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Next steps:

Sensitivity calculation:

⇒ Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASToR.

Continuous LM-MLEM :
Consider the 5 types of events in the reconstruction method;

⇒ Derivation of the maximum likelihood equation for the cases 1, 2, 3γ;
Design of the dedicated algorithm and implementation in CASToR framework;
Assessment of the algorithm with simulated1 and real data.

1e.g. with GATE simulation platform - Jan et al. [2004]
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Thank you for your attention
Questions?
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XEnon Medical Imaging System (XEMIS)

Project start-up: 2004 by XENON team - SUBATECH laboratory (France).

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe);
Based on the three-photon imaging technique (3γ)

Three-phased project:
XEMIS1: Development of the LXe Compton telescope

prototype;
XEMIS2: LXe pre-clinical camera for rodents total-body

imaging;
XEMIS3: LXe clinical camera for total-body imaging.

Efforts are spent in experimental design of the camera.
3γ imaging technique in XEMIS LXe detector.

1Source: SUBATECH laboratory.
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Statistical model

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction ≡ inverse problem

Given the measured coincidences: y := (yib)i∈J1,IK,b∈J1,BK ;
Estimate the radioactive density: λ := (λj)j∈J1,JK .

Direct model
yib are i.i.d. s.t.

yib ∼ P (yib) ∀i ∈ J1, IK, ∀b ∈ J1, BK
yib :=

∑
j∈J1,JK

Aibjλj + sib + ri

Complex problem
⇒ Large dimensions of A;
⇒ Noisy measurement vector y;
⇒ Small perturbation in projection space⇝ Large error in image
space.

Notations - Cherry et al. [2012]

M.Latif | Workshop EmiLy 2022



Maximum-Likelihood Expectation-Maximization for PET -Vardi et al. [1985], Lange et al. [1984]

λ̂
ML

= argmax
λ∈RJ

+

(log(L(λ|y)))

MLEM algorithm1:

Determine λ̂
ML

for a probabilistic model depending on latent data;

Likelihood update equations:
λ(0) = λ

(0)
j > 0

λ
(t+1)
j = λ

(t)
j ×

1∑
i∈J1,IK
b∈J1,BK

Aibj

∑
i∈J1,IK
b∈J1,BK

Aibj
yib∑

j′∈J1,JK Aibj′ λ
(t)
j′ + sib + ri

∀j ∈ J1, JK

Properties:

• The MLEM converges to a λ̂
ML

;
• The densities (λj) are non-negative.

1Originally developed by Dempster et al. [1977].
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List-Mode MLEM - Parra and Barrett [1998]

λ̂
ML

= argmax
λ∈RJ

+

(log(L(λ|y)))

LM-MLEM algorithm:

Determine λ̂
ML

for a model depending on latent data with the only detected events1 stored in a list L;

Likelihood update equations:
λ(0) = λ

(0)
j > 0

λ
(t+1)
j = λ

(t)
j ×

1∑
i∈J1,IK
b∈J1,BK

∫
Aij(v)dv

∑
n∈J1,NK Ainj(vn)

1∑
j′∈J1,JK Ainj′ (vn)λ(t)

j′ + sin (vn) + rin

∀j ∈ J1, JK
where yib ∈ {0, 1} ∀i ∈ J1, IK, b ∈ J1, BK and N := Card(L)
Further properties:

• Each event can be treated as a point in a continuous measurement space;
⇒ No discretization of data⇝ preserve accuracy of measurement.
1Spatial, temporal and energy data.
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XEMIS2 camera & 3γ imaging

XEMIS2
A monolithic, cylindrical & total-body Compton camera:
Scandium-44: (β+, γ) radionuclide:

44
21Sc β+

−−−→
94.27%

44
20Ca∗ + νe + e

+

44
20Ca∗ γ−−→

blabl

44
20Ca + γ

with E0 = 1.157MeV.

Assumptions
Let M be a decay source ⇒ Compton cone:

Apex: V1 ;
Axis: ∆ =

−−−→
V2V1 ;

Angle: θ = arccos
(

1 − mec2E1
E0(E0−E1)

)
;

Property: M lies on the Cone-Surface Response (CSR).

Opportunity: LOR/CSR intersection;

Challenge: Reconstruct the image from a continuous 3γ signal.
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State of the art: Image Reconstruction for 3γ PET Imaging - Giovagnoli et al. [2021]

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:
Transform information from 3rd γ into a TOF information ⇒ N (v, σ2)

v : LOR/CSR Intersection (LCI);
σ : pseudo-TOF standard deviation.

Assumptions :

• σ is fixed whatever the orientation of the γ wrt. the LOR;
• Virtual discretization of the continuous detector;
• Only 3γ events are taken into account.

Proportions of events:

3γ ∼ 10% , 2γ ∼ 50%, 1γ ∼ 40% Pseudo-TOF Method1

1Source: Giovagnoli [2020]
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Our approach

3γ ∼ 10%, 2γ ∼ 50%, 1γ ∼ 40%

Purpose of my PhD thesis

Design and implementation of reconstruction algorithms for the 3γ imaging provided by the XEMIS2 camera.

Our methodology

• Derivation of a LM-MLEM algorithm taking into account
• the continuous aspect of the LXe detection space
• handling the all types of events i.e. 1γ, 2γ or 3γ
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Continuous LM-MLEM

Reformulation of the LM-MLEM in the continuous space :
λ(0) = λ

(0)
j > 0

λ
(t+1)
j = λ

(t)
j ×

1∫
δ∈L

Aj(δ)dδ︸ ︷︷ ︸
=sj

∑
n∈J1,NK Aj(δn)

1∑
j′∈J1,JK Aj′ (δn)λ(t)

j′ + ε(δn) ∀j ∈ J1, JK
where

δ: integration variable associated to an event;
L: detection domain given by:

1γ: a CSR with E0 = 511keV
or a CSR with E0 = 1.157MeV

2γ: a LOR i.e. 2 × E0 = 511keV
or a 2 CSR intersection with E0 = 511keV & E0 = 1.157MeV

3γ: a combination of independent LOR & CSR.

So: there are 5 types of events to consider!
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CASToR & POLLUX

Algorithm implementation: using CASToR1 framework - Merlin et al. [2018];

For the time being
CASToR is implemented for standard PET camera:
• discrete detectors;
• LOR events.

Upgrading Castor
We have to extend CASToR with:
• continuous detection space capability with associated sensitivity computation;
• a CSR projector e.g. Ellipse-stacking method or Ray-tracing method2 ;
• new types of events including 1γ for Compton imaging and 3γ.

⇒ Some data are required!

Hello POLLUX!
A simple home-made Monte Carlo simulator based on ray-tracing techniques with some physical
considerations e.g. positron range, mean free path, photon cross section, …
1Customizable and Advanced Software for Tomographic Reconstruction
2Sources: Ellipse-stacking method - Wilderman et al. [1998], Ray-tracing method - Kim et al. [2007]
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POLLUX - 2γ LOR case

Voxel size: 4 × 4 × 4 mm3

Image size: 96 × 96 × 120 mm3

Total number of voxel: J = 17280

fhdj
Positron range: ∼ N (2.4, 2);

LXe Density: ρ ≈ 3.06 g.cm−3 ;

Attenuation coeff.: µ ≈ 0.291 cm−1 for E0 = 511keV.
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Next steps:

Sensitivity calculation:

⇒ Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASToR.

Continuous LM-MLEM :
Consider the 5 types of events in the reconstruction method;

⇒ Derivation of the maximum likelihood equation for the cases 1, 2, 3γ;
Design of the dedicated algorithm and implementation in CASToR framework;
Assessment of the algorithm with simulated and real data.
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Sensitivity calculation

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E0 photon belonging to the voxel j in the FOV

2γ Annihilation caseM.Latif | Workshop EmiLy 2022



Sensitivity calculation

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E0 photon belonging to the voxel j in the FOV

1γ case with incident energy E0
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Sensitivity calculation
Let M be an emission point of a E0 photon belonging to the voxel j in the FOV:

s2γ (M) :=

∫ π

θ=0

∫ π
2

φ=0

pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, I1)2 − Õ P 2 − Q

))
× pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, J2)2 − Õ P 2 − Q

))
dφ

+

∫ 0

φ=− π
2

pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, I2)2 − Õ P 2 − Q

))
× pi

( 1

| cos(φ)|

(√
R

2γ
out(φ, J1)2 − Õ P 2 − Q

))
dφdθ

Õ P := sin(θ) Õ M, Q :=
√

R2
1 − Õ P 2.

s1γ (M) :=

∫ 2π

θ=0

[∫ π
2

φ=0

∫ R
1γ
out(φ,I1)

v=Rin

h(φ, θ, v)dvdφ +

∫ π

φ= π
2

∫ R
1γ
out(φ,J1)

v=Rin

h(φ, θ, v)dvdφ

+

∫ 0

φ=− π
2

∫ R
1γ
out(φ,I2)

v=Rin

h(φ, θ, v)dvdφ +

∫ − π
2

φ=−π

∫ R
1γ
out(φ,J2)

v=Rin

h(φ, θ, v)dvdφ

]
dθ

with h(φ, θ, v) := f(φ, θ, v) × C(v, θ, φ)

f(φ, θ, v) := pi

(
1

| cos(φ)|

(√
v2 − sin2(θ) Õ M2 −

√
2

Rin − sin2(θ) Õ M2

))
C(v, θ, φ) :=

∫ π

β=−π

K(β|E0)

∫ 2π

ω=0

∫ ρmax(v,θ,φ,β,ω)

ρ=0

p
′
i

(
∥−−−→

V1V2∥2
)

dβdωdρ
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