Challenges and opportunities of three-photon tomographic reconstruction for the XEnon Medical Imaging System

Workshop EmiLy 2022

07/11/2022

Mehdi Latif^{1,2}, Jérôme Idier¹, Thomas Carlier², Simon Stute²

¹SiMS,LS2N - Ecole Centrale Nantes, ²Nuclear Oncology, CRCI2NA - CHU de Nantes

General background: XEMIS Project

PET model & reconstruction algorithms

XEMIS2, 3γ imaging & pseudo-TOF method

Our approach

What's next?

General background: XEMIS Project

PET model & reconstruction algorithms

XEMIS2, 3γ imaging & pseudo-TOF method

Our approach

What's next?

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe);

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

 3γ imaging technique in XEMIS LXe detector.

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

Three-phased project:

 3γ imaging technique in XEMIS LXe detector.

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

Three-phased project:

XEMIS1: Development of the LXe Compton telescope prototype;

 3γ imaging technique in XEMIS LXe detector.

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

Three-phased project:

XEMIS1: Development of the LXe Compton telescope prototype;

XEMIS2: LXe pre-clinical camera for rodents total-body imaging;

XEMIS2 sketch¹

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

Three-phased project:

- XEMIS1: Development of the LXe Compton telescope prototype;
- XEMIS2: LXe pre-clinical camera for rodents total-body imaging;

XEMIS2 camera - CHU-CIMA Nantes¹

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

Three-phased project:

- XEMIS1: Development of the LXe Compton telescope prototype;
- XEMIS2: LXe pre-clinical camera for rodents total-body imaging;

XEMIS3: LXe clinical camera for total-body imaging.

XEMIS2 camera - CHU-CIMA Nantes¹

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

Three-phased project:

- **XEMIS1:** Development of the LXe Compton telescope prototype;
- XEMIS2: LXe pre-clinical camera for rodents total-body imaging;

XEMIS3: LXe clinical camera for total-body imaging.

Efforts are spent in experimental design of the camera.

XEMIS2 camera - CHU-CIMA Nantes¹

General background: XEMIS Project

PET model & reconstruction algorithms

XEMIS2, 3γ imaging & pseudo-TOF method

Our approach

What's next?

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $y := (y_{ib})_{i \in \llbracket 1, I \rrbracket, b \in \llbracket 1, B \rrbracket}$;

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Direct model

 y_{ib} are i.i.d. s.t.

 $y_{ib} \sim \mathcal{P}(\overline{y}_{ib}) \quad \forall i \in [\![1, I]\!], \quad \forall b \in [\![1, B]\!]$

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Direct model

 y_{ib} are i.i.d. s.t.

$$\begin{split} y_{ib} \sim & \mathcal{P}\left(\overline{y}_{ib}\right) \;\; \forall i \in [\![1,I]\!], \;\; \forall b \in [\![1,B]\!] \\ \\ \overline{y}_{ib} := \sum_{j \in [\![1,J]\!]} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i \end{split}$$

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Direct model

 y_{ib} are i.i.d. s.t.

$$\begin{split} y_{ib} \sim & \mathcal{P}\left(\overline{y}_{ib}\right) \;\; \forall i \in [\![1,I]\!], \;\; \forall b \in [\![1,B]\!] \\ \\ \overline{y}_{ib} := \sum_{j \in [\![1,J]\!]} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i \end{split}$$

Complex problem

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Direct model

 y_{ib} are i.i.d. s.t.

$$\begin{split} y_{ib} \sim & \mathcal{P}\left(\overline{y}_{ib}\right) \;\; \forall i \in [\![1,I]\!], \;\; \forall b \in [\![1,B]\!] \\ \\ \overline{y}_{ib} := \sum_{j \in [\![1,J]\!]} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i \end{split}$$

Complex problem

 \Rightarrow Large dimensions of A;

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Direct model

 y_{ib} are i.i.d. s.t.

$$\begin{split} y_{ib} \sim & \mathcal{P}\left(\overline{y}_{ib}\right) \;\; \forall i \in [\![1,I]\!], \;\; \forall b \in [\![1,B]\!] \\ & \overline{y}_{ib} := \sum_{j \in [\![1,J]\!]} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i \end{split}$$

Complex problem

 \Rightarrow Large dimensions of A;

 \Rightarrow Noisy measurement vector y;

Notations - Cherry et al. [2012]

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Direct model

 y_{ib} are i.i.d. s.t.

$$\begin{split} y_{ib} \sim & \mathcal{P}\left(\overline{y}_{ib}\right) \;\; \forall i \in [\![1,I]\!], \;\; \forall b \in [\![1,B]\!]\\ \overline{y}_{ib} := \sum_{j \in [\![1,J]\!]} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i \end{split}$$

Complex problem

 \Rightarrow Large dimensions of A;

 \Rightarrow Noisy measurement vector y;

 \Rightarrow Small perturbation in projection space \leadsto Large error in image space.

Notations - Cherry et al. [2012]

Maximum-Likelihood Expectation-Maximization for PET -Vardi et al. [1985], Lange et al. [1984]

$$\widehat{oldsymbol{\lambda}}^{ ext{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$$

$$\widehat{\boldsymbol{\lambda}}^{\mathrm{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{\boldsymbol{\lambda} \in \mathbb{R}^{J}_{+}} \left(\log(\mathcal{L}(\boldsymbol{\lambda}|\boldsymbol{y})) \right)$$

MLEM algorithm¹:

Determine $\widehat{\lambda}^{\mathrm{ML}}$ for a probabilistic model depending on latent data;

¹Originally developed by Dempster et al. [1977].

$$\widehat{\boldsymbol{\lambda}}^{\mathrm{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{\boldsymbol{\lambda} \in \mathbb{R}^{J}_{+}} \left(\log(\mathcal{L}(\boldsymbol{\lambda}|\boldsymbol{y})) \right)$$

MLEM algorithm¹:

Determine $\widehat{\lambda}^{\mathrm{ML}}$ for a probabilistic model depending on latent data;

Likelihood update equations:

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj} \frac{y_{ib}}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{ibj'} \lambda_{j'}^{(t)} + \overline{s}_{ib} + \overline{r}_i} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

¹Originally developed by Dempster et al. [1977].

$$\widehat{\boldsymbol{\lambda}}^{\mathrm{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{\boldsymbol{\lambda} \in \mathbb{R}^{J}_{+}} \left(\log(\mathcal{L}(\boldsymbol{\lambda}|\boldsymbol{y})) \right)$$

MLEM algorithm¹:

Determine $\widehat{\lambda}^{\mathrm{ML}}$ for a probabilistic model depending on latent data;

Likelihood update equations:

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj} \frac{y_{ib}}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{ibj'} \lambda_{j'}^{(t)} + \overline{s}_{ib} + \overline{r}_i} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

Properties:

- \cdot The MLEM converges to a $\widehat{\lambda}^{\mathrm{ML}}$;
- The densities (λ_j) are non-negative.

¹Originally developed by Dempster et al. [1977].

List-Mode MLEM - Parra and Barrett [1998]

$$\widehat{oldsymbol{\lambda}}^{ ext{ML}} = rgmax_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$$

 $\widehat{oldsymbol{\lambda}}^{ ext{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$

LM-MLEM algorithm:

Determine $\widehat{\lambda}^{\mathrm{ML}}$ for a model depending on **latent data** with the **only detected events**¹ stored in a **list** *L*;

¹Spatial, temporal and energy data.

 $\widehat{oldsymbol{\lambda}}^{ ext{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$

LM-MLEM algorithm:

Determine $\widehat{\lambda}^{ML}$ for a model depending on latent data with the only detected events¹ stored in a list *L*; Likelihood update equations:

$$\begin{cases} \boldsymbol{\lambda}^{(0)} &= \boldsymbol{\lambda}^{(0)}_{j} > 0\\ \boldsymbol{\lambda}^{(t+1)}_{j} &= \boldsymbol{\lambda}^{(t)}_{j} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\ b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum_{\boldsymbol{n} \in \llbracket 1, N \rrbracket} A_{i_{\boldsymbol{n}}b_{\boldsymbol{n}}j} \frac{1}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{i_{\boldsymbol{n}}b_{\boldsymbol{n}}j'} \boldsymbol{\lambda}^{(t)}_{j'} + \overline{s}_{i_{\boldsymbol{n}}b_{\boldsymbol{n}}} + \overline{r}_{i_{\boldsymbol{n}}}} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where $y_{ib} \in \{0,1\} \ \forall i \in \llbracket 1,I \rrbracket, b \in \llbracket 1,B \rrbracket$ and $N := \mathbf{Card}(L)$

¹Spatial, temporal and energy data.

 $\widehat{oldsymbol{\lambda}}^{ ext{ML}} = \operatorname*{argmax}_{oldsymbol{\lambda} \in \mathbb{R}^{J}_{+}} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$

LM-MLEM algorithm:

Determine $\widehat{\lambda}^{ML}$ for a model depending on latent data with the only detected events¹ stored in a list *L*; Likelihood update equations:

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \boldsymbol{\lambda^{(0)}_j} > 0\\ \boldsymbol{\lambda^{(t+1)}_j} &= \boldsymbol{\lambda^{(t)}_j} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\ b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum_{\substack{n \in \llbracket 1, N \rrbracket}} A_{i_n b_n j} \frac{1}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{i_n b_n j'} \boldsymbol{\lambda^{(t)}_{j'}} + \overline{s}_{i_n b_n} + \overline{r}_{i_n}} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where $y_{ib} \in \{0, 1\} \ \forall i \in [\![1, I]\!], b \in [\![1, B]\!]$ and N := Card(L)Further properties:

- · Each event can be treated as a point in a continuous measurement space;
- \Rightarrow **No discretization** of data \rightsquigarrow preserve accuracy of measurement.

¹Spatial, temporal and energy data.

 $\widehat{\boldsymbol{\lambda}}^{\mathrm{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{\boldsymbol{\lambda} \in \mathbb{R}^{J}_{+}} \left(\log(\mathcal{L}(\boldsymbol{\lambda} | \boldsymbol{y})) \right)$

LM-MLEM algorithm:

Determine $\widehat{\lambda}^{ML}$ for a model depending on latent data with the only detected events¹ stored in a list *L*; Likelihood update equations:

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{i \in \llbracket 1, I \rrbracket} \int A_{ij}(v) \mathrm{d}v} \sum_{\boldsymbol{n} \in \llbracket 1, N \rrbracket} A_{i_{\boldsymbol{n}}j}(v_{\boldsymbol{n}}) \frac{1}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{i_{\boldsymbol{n}}j'}(v_{\boldsymbol{n}}) \lambda_{j'}^{(t)} + \overline{s}_{i_{\boldsymbol{n}}}(v_{\boldsymbol{n}}) + \overline{r}_{i_{\boldsymbol{n}}}} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where $y_{ib} \in \{0, 1\} \ \forall i \in [\![1, I]\!], b \in [\![1, B]\!]$ and $N := \mathbf{Card}(L)$ Further properties:

- · Each event can be treated as a point in a continuous measurement space;
- \Rightarrow **No discretization** of data \rightsquigarrow preserve accuracy of measurement.

¹Spatial, temporal and energy data.

General background: XEMIS Project

PET model & reconstruction algorithms

XEMIS2, 3γ imaging & pseudo-TOF method

Our approach

What's next?

XEMIS2

A monolithic, cylindrical & total-body Compton camera:

LXe active zone: 24cm in length, 7cm (resp. 19cm) of inner (resp. outer) radius.

XEMIS2

A monolithic, cylindrical & total-body Compton camera: **Scandium-44:** (β^+, γ) radionuclide:

$$\begin{array}{c} {}^{44}_{21}\mathrm{Sc} \xrightarrow{\beta^+} & {}^{44}_{20}\mathrm{Ca}^* + \nu_e + e^+ \\ & \\ & {}^{44}_{20}\mathrm{Ca}^* \xrightarrow{\gamma} {}^{44}_{20}\mathrm{Ca} + \boldsymbol{\gamma} \end{array} \mathrm{with} \ E_0 = 1.157\mathrm{MeV}. \end{array}$$

LXe active zone: 24cm in length, 7cm (resp. 19cm) of inner (resp. outer) radius.

XEMIS2 camera & 3γ imaging

XEMIS2

A monolithic, cylindrical & total-body Compton camera: Scandium-44: (β^+,γ) radionuclide:

$$\begin{array}{c} {}^{44}_{21}\mathrm{Sc} \xrightarrow{\beta^+}_{94,27\%} & {}^{44}_{20}\mathrm{Ca}^* + \nu_e + e^+ \\ & \\ & {}^{44}_{20}\mathrm{Ca}^* \xrightarrow{\gamma}_{20} {}^{44}_{20}\mathrm{Ca} + \boldsymbol{\gamma} \end{array} \mathrm{with} \ E_0 = 1.157\mathrm{MeV}. \end{array}$$

Assumptions

Let M be a decay source

XEMIS2

A monolithic, cylindrical & total-body Compton camera: Scandium-44: (β^+,γ) radionuclide:

$$\begin{array}{c} {}^{44}_{21}\mathrm{Sc} \xrightarrow{\beta^+} & {}^{44}_{20}\mathrm{Ca}^* + \nu_e + e^+ \\ & \\ & {}^{44}_{20}\mathrm{Ca}^* \xrightarrow{\gamma} {}^{44}_{20}\mathrm{Ca} + \gamma \end{array} \mathrm{with} \ E_0 = 1.157\mathrm{MeV}. \end{array}$$

Assumptions

Let *M* be a decay source \Rightarrow **Compton cone**:

Apex:
$$V_1$$
;
Axis: $\Delta = \overrightarrow{V_2V_1}$;
Angle: $\theta = \arccos\left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)}\right)$;

XEMIS2

A monolithic, cylindrical & total-body Compton camera: Scandium-44: (β^+, γ) radionuclide:

Assumptions

Let *M* be a decay source \Rightarrow **Compton cone**:

Apex:
$$V_1$$
;
Axis: $\Delta = \overrightarrow{V_2V_1}$;
Angle: $\theta = \arccos\left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)}\right)$;

Property: *M* lies on the **Cone-Surface Response** (CSR).

XEMIS2

A monolithic, cylindrical & total-body Compton camera: Scandium-44: (β^+, γ) radionuclide:

Assumptions

Let *M* be a decay source \Rightarrow **Compton cone**:

Apex:
$$V_1$$
;
Axis: $\Delta = \overrightarrow{V_2V_1}$;
Angle: $\theta = \arccos\left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)}\right)$;

Property: *M* lies on the **Cone-Surface Response** (CSR).

Opportunity: LOR/CSR intersection;

XEMIS2

A monolithic, cylindrical & total-body Compton camera: Scandium-44: (β^+, γ) radionuclide:

Assumptions

Let *M* be a decay source \Rightarrow **Compton cone**:

Apex:
$$V_1$$
;
Axis: $\Delta = \overrightarrow{V_2V_1}$;
Angle: $\theta = \arccos\left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)}\right)$;

Property: *M* lies on the **Cone-Surface Response** (CSR).

Opportunity: LOR/CSR intersection;

Challenge: Reconstruct the image from a continuous 3γ signal.

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:

Transform information from 3rd γ into a TOF information $\Rightarrow \mathcal{N}(v,\sigma^2)$

- v: LOR/CSR Intersection (LCI);
- σ : pseudo-TOF standard deviation.

Pseudo-TOF Method¹

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:

Transform information from 3rd γ into a TOF information $\Rightarrow \mathcal{N}(v,\sigma^2)$

- v: LOR/CSR Intersection (LCI);
- σ : pseudo-TOF standard deviation.

Assumptions :

 \cdot σ is **fixed** whatever the orientation of the γ wrt. the LOR;

Pseudo-TOF Method¹

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:

Transform information from 3rd γ into a TOF information $\Rightarrow \mathcal{N}(v,\sigma^2)$

- v: LOR/CSR Intersection (LCI);
- σ : pseudo-TOF standard deviation.

Assumptions :

- \cdot σ is **fixed** whatever the orientation of the γ wrt. the LOR;
- Virtual discretization of the continuous detector;

Pseudo-TOF Method¹

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:

Transform information from 3rd γ into a TOF information $\Rightarrow \mathcal{N}(v,\sigma^2)$

- v: LOR/CSR Intersection (LCI);
- σ : pseudo-TOF standard deviation.

Assumptions :

- \cdot σ is **fixed** whatever the orientation of the γ wrt. the LOR;
- Virtual discretization of the continuous detector;
- + Only 3γ events are taken into account.

Pseudo-TOF Method¹

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:

Transform information from 3rd γ into a TOF information $\Rightarrow \mathcal{N}(v,\sigma^2)$

- v: LOR/CSR Intersection (LCI);
- σ : pseudo-TOF standard deviation.

Assumptions :

- \cdot σ is **fixed** whatever the orientation of the γ wrt. the LOR;
- Virtual discretization of the continuous detector;
- + Only 3γ events are taken into account.

Proportions of events:

$$\boxed{\mathbf{3\gamma}\ \sim\mathbf{10\%}}$$
, $2\gamma\ \sim50\%$, $1\gamma\ \sim40\%$

Pseudo-TOF Method¹

General background: XEMIS Project

PET model & reconstruction algorithms

XEMIS2, 3γ imaging & pseudo-TOF method

Our approach

What's next?

Purpose of my PhD thesis

Design and **implementation** of reconstruction algorithms for the 3γ imaging provided by the XEMIS2 camera.

Purpose of my PhD thesis

Design and **implementation** of reconstruction algorithms for the 3γ imaging provided by the XEMIS2 camera.

Our methodology

· Derivation of a LM-MLEM algorithm taking into account

Purpose of my PhD thesis

Design and **implementation** of reconstruction algorithms for the 3γ imaging provided by the XEMIS2 camera.

Our methodology

- · Derivation of a LM-MLEM algorithm taking into account
 - the continuous aspect of the LXe detection space

Purpose of my PhD thesis

Design and **implementation** of reconstruction algorithms for the 3γ imaging provided by the XEMIS2 camera.

Our methodology

- · Derivation of a LM-MLEM algorithm taking into account
 - $\cdot\,$ the continuous aspect of the LXe detection space
 - \cdot handling the all types of events i.e. 1γ , 2γ or 3γ

Reformulation of the LM-MLEM in the continuous space :

Reformulation of the LM-MLEM in the continuous space :

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in \llbracket 1, N \rrbracket} A_j(\delta_n) \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where

 δ : integration variable associated to an **event**;

Reformulation of the LM-MLEM in the continuous space :

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in \llbracket 1, N \rrbracket} A_j(\delta_n) \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where

 δ : integration variable associated to an **event**;

L: detection domain given by:

Reformulation of the LM-MLEM in the continuous space :

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in \llbracket 1, N \rrbracket} A_j(\delta_n) \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where

 δ : integration variable associated to an **event**;

L: detection domain given by:

 1γ : a CSR with $E_0 = 511$ keV or a CSR with $E_0 = 1.157$ MeV

Reformulation of the LM-MLEM in the continuous space :

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in \llbracket 1, N \rrbracket} A_j(\delta_n) \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where

 δ : integration variable associated to an **event**;

L: detection domain given by:

 1γ :a CSR with $E_0 = 511 \text{keV}$ or a CSR with $E_0 = 1.157 \text{MeV}$ 2γ :a LOR i.e. $2 \times E_0 = 511 \text{keV}$ or a 2 CSR intersection with $E_0 = 511 \text{keV} \& E_0 = 1.157 \text{MeV}$

Reformulation of the LM-MLEM in the continuous space :

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in \llbracket 1, N \rrbracket} A_j(\delta_n) \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where

 δ : integration variable associated to an **event**;

L: detection domain given by:

- 1γ :a CSR with $E_0 = 511 \text{keV}$ or a CSR with $E_0 = 1.157 \text{MeV}$ 2γ :a LOR i.e. $2 \times E_0 = 511 \text{keV}$ or a 2 CSR intersection with $E_0 = 511 \text{keV} \& E_0 = 1.157 \text{MeV}$
- 3γ : a combination of independent LOR & CSR.

Reformulation of the LM-MLEM in the continuous space :

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta} \sum_{n \in \llbracket 1, N \rrbracket} A_j(\delta_n) \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where

 δ : integration variable associated to an **event**;

L: detection domain given by:

 1γ :a CSR with $E_0 = 511 \text{keV}$ or a CSR with $E_0 = 1.157 \text{MeV}$ 2γ :a LOR i.e. $2 \times E_0 = 511 \text{keV}$ or a 2 CSR intersection with $E_0 = 511 \text{keV} \& E_0 = 1.157 \text{MeV}$ 3γ :a combination of independent LOR & CSR.

So: there are 5 types of events to consider!

Reformulation of the LM-MLEM in the continuous space :

$$\begin{pmatrix} \boldsymbol{\lambda}^{(0)} = \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} = \lambda_j^{(t)} \times \underbrace{\frac{1}{\int_{\delta \in \mathcal{L}} A_j(\delta) \mathrm{d}\delta}}_{=s_j} \sum_{n \in [\![1,N]\!]} A_j(\delta_n) \frac{1}{\sum_{j' \in [\![1,J]\!]} A_{j'}(\delta_n) \lambda_{j'}^{(t)} + \varepsilon(\delta_n)} \quad \forall j \in [\![1,J]\!] \end{cases}$$

where

 δ : integration variable associated to an **event**;

L: detection domain given by:

- 1γ :a CSR with $E_0 = 511 \text{keV}$ or a CSR with $E_0 = 1.157 \text{MeV}$ 2γ :a LOR i.e. $2 \times E_0 = 511 \text{keV}$ or a 2 CSR intersection with $E_0 = 511 \text{keV} \otimes E_0 = 1.157 \text{MeV}$
 - 3γ : a combination of independent LOR & CSR.

So: there are 5 types of events to consider!

Sensitivity calculation

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E_0 photon belonging to the voxel j in the FOV

Sensitivity calculation

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E_0 photon belonging to the voxel j in the FOV

 1γ case with incident energy E_0

Sensitivity calculation

Let M be an emission point of a E_0 photon belonging to the voxel j in the FOV:

$$\begin{split} s_{2\gamma}(M) &:= \int_{\theta=0}^{\pi} \int_{\varphi=0}^{\frac{\pi}{2}} p_i \left(\frac{1}{|\cos(\varphi)|} \left(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, I1)^2 - \widetilde{O}P^2} - Q \right) \right) \times p_i \left(\frac{1}{|\cos(\varphi)|} \left(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, J2)^2 - \widetilde{O}P^2} - Q \right) \right) d\varphi \\ &+ \int_{\varphi=-\frac{\pi}{2}}^{0} p_i \left(\frac{1}{|\cos(\varphi)|} \left(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, I2)^2 - \widetilde{O}P^2} - Q \right) \right) \times p_i \left(\frac{1}{|\cos(\varphi)|} \left(\sqrt{R_{\text{out}}^{2\gamma}(\varphi, J1)^2 - \widetilde{O}P^2} - Q \right) \right) d\varphi d\varphi \\ \widetilde{O} P := \sin(\theta) \widetilde{O} M, \quad Q := \sqrt{R_1^2 - \widetilde{O}P^2}. \\ s_{1\gamma}(M) := \int_{\theta=0}^{2\pi} \left[\int_{\varphi=0}^{\frac{\pi}{2}} \int_{v=R_{\text{in}}}^{R_{\text{out}}^{1\gamma}(\varphi, I1)} h(\varphi, \theta, v) dv d\varphi + \int_{\varphi=\frac{\pi}{2}}^{\pi} \int_{v=R_{\text{in}}}^{R_{\text{out}}^{1\gamma}(\varphi, J2)} h(\varphi, \theta, v) dv d\varphi \\ &+ \int_{\varphi=-\frac{\pi}{2}}^{0} \int_{v=R_{\text{in}}}^{R_{\text{out}}^{1\gamma}(\varphi, I2)} h(\varphi, \theta, v) dv d\varphi + \int_{\varphi=-\pi}^{-\frac{\pi}{2}} \int_{v=R_{\text{in}}}^{R_{\text{out}}^{1\gamma}(\varphi, J2)} h(\varphi, \theta, v) dv d\varphi \right] d\theta \\ &\text{ with } h(\varphi, \theta, v) := f(\varphi, \theta, v) \times C(v, \theta, \varphi) \\ f(\varphi, \theta, v) := p_i \left(\frac{1}{|\cos(\varphi)|} \left(\sqrt{v^2 - \sin^2(\theta) \widetilde{O}M^2} - \sqrt{\frac{2}{R_{\text{in}}} - \sin^2(\theta) \widetilde{O}M^2} \right) \right) \\ C(v, \theta, \varphi) := \int_{\beta=-\pi}^{\pi} K(\beta|E_0) \int_{\varphi=0}^{2\pi} \int_{\rho=0}^{\rho_{\text{max}}(v, \theta, \varphi, \beta, \omega)} p_i' \left(\|\overline{V_1V_2}\|_2 \right) d\beta d\omega d\varphi \right] \\ \end{cases}$$

9

MLatif

For the time being

CASTOR is implemented for **standard PET camera**:

For the time being

CASTOR is implemented for standard PET camera:

discrete detectors;

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

Upgrading Castor

We have to **extend** CASToR with:

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

Upgrading Castor

We have to **extend** CASToR with:

· continuous detection space capability with associated sensitivity computation;

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

Upgrading Castor

We have to **extend** CASToR with:

- · continuous detection space capability with associated sensitivity computation;
- a CSR projector *e.g.* Ellipse-stacking method or Ray-tracing method²;

¹Customizable and Advanced Software for Tomographic Reconstruction

²Sources: Ellipse-stacking method - Wilderman et al. [1998], Ray-tracing method - Kim et al. [2007]

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

Upgrading Castor

We have to **extend** CASToR with:

- · continuous detection space capability with associated sensitivity computation;
- a CSR projector *e.g.* Ellipse-stacking method or Ray-tracing method²;
- $\cdot\,$ new types of events including 1γ for Compton imaging and $3\gamma.$

¹Customizable and Advanced Software for Tomographic Reconstruction

²Sources: Ellipse-stacking method - Wilderman et al. [1998], Ray-tracing method - Kim et al. [2007]
Algorithm implementation: using CASTOR¹ framework - Merlin et al. [2018];

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

Upgrading Castor

We have to **extend** CASToR with:

- · continuous detection space capability with associated sensitivity computation;
- a CSR projector *e.g.* Ellipse-stacking method or Ray-tracing method²;
- $\cdot\,$ new types of events including 1γ for Compton imaging and $3\gamma.$

⇒ Some data are required!

¹Customizable and Advanced Software for Tomographic Reconstruction

²Sources: Ellipse-stacking method - Wilderman et al. [1998], Ray-tracing method - Kim et al. [2007]

Algorithm implementation: using CASTOR¹ framework - Merlin et al. [2018];

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

Upgrading Castor

We have to **extend** CASToR with:

- · continuous detection space capability with associated sensitivity computation;
- a CSR projector *e.g.* Ellipse-stacking method or Ray-tracing method²;
- $\cdot\,$ new types of events including 1γ for Compton imaging and $3\gamma.$

⇒ Some data are required!

Hello POLLUX!

A simple **home-made** Monte Carlo simulator based on **ray-tracing** techniques with some physical considerations *e.g.* positron range, mean free path, photon cross section, ...

¹Customizable and Advanced Software for Tomographic Reconstruction

²Sources: Ellipse-stacking method - Wilderman et al. [1998], Ray-tracing method - Kim et al. [2007]

POLLUX - 2γ LOR case

Voxel size: $4 \times 4 \times 4 \text{ mm}^3$ Image size: $96 \times 96 \times 120 \text{ mm}^3$ Total number of voxel: J = 17280

LXe active zone:

- 24cm in length;
- 7cm (resp. 19cm) of inner (resp. outer) radius.

Voxel size: $4 \times 4 \times 4 \text{ mm}^3$

Total number of voxel: J = 17280

¹Source: Giovagnoli et al. [2021]

Image size: $96 \times 96 \times 120 \text{ mm}^3$

 $\begin{array}{ll} \mbox{Positron range:} & \sim \mathcal{N}(\mu,2) \mbox{ with } \mu = 2.4\ ^1; \\ \mbox{LXe Density:} & \rho \approx 3.06\ \mbox{g.cm}^{-3}; \\ \mbox{Attenuation coeff.:} & \mu \approx 0.291\ \mbox{cm}^{-1} \mbox{ at } 511\mbox{keV}. \end{array}$

Voxel size: $4 \times 4 \times 4 \text{ mm}^3$ Image size: $96 \times 96 \times 120 \text{ mm}^3$ Total number of voxel: J = 17280

Repeat N times e.g. N = 200

Voxel size: $4 \times 4 \times 4 \text{ mm}^3$ Image size: $96 \times 96 \times 120 \text{ mm}^3$

Total number of voxel: J = 17280

Voxel size: $4 \times 4 \times 4 \text{ mm}^3$

Image size: $96 \times 96 \times 120 \text{ mm}^3$

Total number of voxel: J = 17280

General background: XEMIS Project

PET model & reconstruction algorithms

XEMIS2, 3γ imaging & pseudo-TOF method

Our approach

What's next?

 \Rightarrow Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASTOR.

 \Rightarrow Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASToR.

Continuous LM-MLEM :

Consider the 5 types of events in the reconstruction method;

 \Rightarrow Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASToR.

Continuous LM-MLEM :

Consider the 5 types of events in the reconstruction method;

 \Rightarrow Derivation of the maximum likelihood equation for the cases 1, 2, 3 γ ;

 \Rightarrow Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASToR.

Continuous LM-MLEM :

Consider the 5 types of events in the reconstruction method;

 \Rightarrow Derivation of the maximum likelihood equation for the cases 1, 2, 3 γ ; Design of the dedicated algorithm and implementation in **CASTOR** framework;

 \Rightarrow Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASTOR.

Continuous LM-MLEM :

Consider the 5 types of events in the reconstruction method;

 \Rightarrow Derivation of the maximum likelihood equation for the cases 1, 2, 3 γ ; Design of the dedicated algorithm and implementation in **CASTOR** framework; Assessment of the algorithm with simulated¹ and real data.

¹e.g. with GATE simulation platform - Jan et al. [2004]

Thank you for your attention Questions?

References i

- Cherry, S. R., Sorenson, J. A., and Phelps, M. E. (2012). Physics in nuclear medicine e-Book. Elsevier Health Sciences.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series, B (Methodological), 39(1):1-38.
- Feng, Y. (2019). Modeling and regularization in tomographic reconstruction for Compton camera imaging. Theses, Université de Lyon.

Giovagnoli, D. (2020). Image reconstruction for three-gamma PET imaging. Theses, Ecole nationale supérieure Mines-Télécom Atlantique.

- Giovagnoli, D., Bousse, A., Beaupere, N., Canot, C., Cussonneau, J.-P., Diglio, S., Iborra Carreres, A., Masbou, J., Merlin, T., Morteau, E., Xing, Y., Zhu, Y., Thers, D., and Visvikis, D. (2021). A pseudo-tof image reconstruction approach for three-gamma small animal imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):826–834.
- Grignon, C., Barbet, J., Bardiës, M., Carlier, T., Chatal, J., Couturier, O., Cussonneau, J., Faivre, A., Ferrer, L., Girault, S., Haruyama, T., Le Ray, P., Luquin, L., Lupone, S., Métivier, V., Morteau, E., Servagent, N., and Thers, D. (2007). Nuclear medical imaging using β γ coincidences from 44sc radio-nuclide with liquid xenon as detection medium. <u>Nuclear Instruments</u> and Methods in Physics Research Section Accelerators, <u>Spectrometers, Detectors and Associated Equipment</u>, 571(1):142-145. Proceedings of the 1st International Conference on Molecular Imaging Technology.
- Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K., Autret, D., Avner, S., Barbier, R., Bardiès, M., Bloomfield, P. M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., Chatziioannou, A. F., Choi, Y., Chung, Y. H., Comtat, C., Donnarieix, D., Ferrer, L., Glick, S. J., Groiselle, C. J., Guez, D., Honore, P.-F., Kerhoas-Cavata, S., Kirov, A. S., Kohli, V., Koole, M., Krieguer, M., van der Laan, D. J., Lamare, F., Largeron, G., Lartizien, C., Lazaro, D., Maas, M. C., Maigne, L., Mayet, F., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F. R., Rey, M., Schaart, D. R., Schmidtlein, C. R., Simon, L., Song, T. Y., Vieira, J.-M., Visvikis, D., de Walle, R. V., Wieërs, E., and Morel, C. (2004). Gate: a simulation toolkit for pet and spect. <u>Physics in Medicine & Biology</u>, 49(19):4543.
- Kim, S. M., Lee, J. S., Lee, M. N., Lee, J. H., Lee, C. S., Kim, C.-H., Lee, D. S., and Lee, S.-J. (2007). Two approaches to implementing projector-backprojector pairs for 3d reconstruction from compton scattered data. <u>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</u>, 571(1):255–258. Proceedings of the 1st International Conference on Molecular Imaging Technology.

Lange, K., Carson, R., and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography, 8(2):306-316.

- Maxim, V., Lojacono, X., Hilaire, E., Krimmer, J., Testa, E., Dauvergne, D., Magnin, I., and Prost, R. (2015). Probabilistic models and numerical calculation of system matrix and sensitivity in list-mode MLEM 3d reconstruction of compton camera images. <u>Physics in Medicine and Biology</u>, 61(1):243–264.
- Merlin, T., Stute, S., Benoit, D., Bert, J., Carlier, T., Comtat, C., Filipovic, M., Lamare, F., and VISVIKIS, D. (2018). CASTOR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction. Physics in Medicine and Biology, 63(18):185005.
- Parra, L. C. and Barrett, H. H. (1998). List-mode likelihood: Em algorithm and image quality estimation demonstrated on 2-d pet. <u>IEEE Transactions on Medical Imaging</u>, 17:228-235. Vardi, Y., Shepp, L. A., and Kaufman, L. (1985). A statistical model for positron emission tomography. Journal of the American Statistical Association, 80(389):8-20.
- Wilderman, S., Rogers, W., Knoll, G., and Engdahl, J. (1998). Fast algorithm for list mode back-projection of compton scatter camera data. IEEE Transactions on Nuclear Science, 45(3):957–962.

Project start-up: 2004 by XENON team - SUBATECH laboratory (France).

XEMIS - Grignon et al. [2007]

Low-activity medical imaging

Development of the Compton camera with liquid xenon (LXe); Based on the three-photon imaging technique (3γ)

Three-phased project:

- XEMIS1: Development of the LXe Compton telescope prototype;
- XEMIS2: LXe pre-clinical camera for rodents total-body imaging;

XEMIS3: LXe clinical camera for total-body imaging.

Efforts are spent in experimental design of the camera.

¹Source: SUBATECH laboratory.

Statistical model

Notations: I := #(LOR), J := #(voxels), B := #(TOF-bins).

Tomographic reconstruction \equiv inverse problem

Given the measured coincidences: $\boldsymbol{y} := (y_{ib})_{i \in [\![1,I]\!], b \in [\![1,B]\!]}$; Estimate the radioactive density: $\boldsymbol{\lambda} := (\lambda_j)_{j \in [\![1,J]\!]}$.

Direct model

 y_{ib} are i.i.d. s.t.

$$\begin{split} y_{ib} \sim & \mathcal{P}\left(\overline{y}_{ib}\right) \;\; \forall i \in [\![1,I]\!], \;\; \forall b \in [\![1,B]\!] \\ & \overline{y}_{ib} := \sum_{j \in [\![1,J]\!]} A_{ibj} \lambda_j + \overline{s}_{ib} + \overline{r}_i \end{split}$$

Complex problem

 \Rightarrow Large dimensions of A;

 \Rightarrow Noisy measurement vector y;

 \Rightarrow Small perturbation in projection space \leadsto Large error in image space.

Notations - Cherry et al. [2012]

$$\widehat{\boldsymbol{\lambda}}^{ ext{ML}} = \operatornamewithlimits{\mathbf{argmax}}_{\boldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(\boldsymbol{\lambda}|\boldsymbol{y}))
ight)$$

MLEM algorithm¹:

Determine $\widehat{\lambda}^{\mathrm{ML}}$ for a probabilistic model depending on latent data;

Likelihood update equations:

$$\begin{cases} \boldsymbol{\lambda^{(0)}} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj}} \sum_{\substack{i \in \llbracket 1, I \rrbracket\\b \in \llbracket 1, B \rrbracket}} A_{ibj} \frac{y_{ib}}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{ibj'} \lambda_{j'}^{(t)} + \overline{s}_{ib} + \overline{r}_i} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

Properties:

- \cdot The MLEM converges to a $\widehat{\lambda}^{\mathrm{ML}}$;
- The densities (λ_j) are non-negative.

¹Originally developed by Dempster et al. [1977].

 $\widehat{oldsymbol{\lambda}}^{ ext{ML}} = \operatornamewithlimits{argmax}_{oldsymbol{\lambda} \in \mathbb{R}^J_+} \left(\log(\mathcal{L}(oldsymbol{\lambda} | oldsymbol{y}))
ight)$

LM-MLEM algorithm:

Determine $\widehat{\lambda}^{ML}$ for a model depending on latent data with the only detected events¹ stored in a list *L*; Likelihood update equations:

$$\begin{cases} \boldsymbol{\lambda}^{(0)} &= \lambda_j^{(0)} > 0\\ \lambda_j^{(t+1)} &= \lambda_j^{(t)} \times \frac{1}{\sum\limits_{i \in \llbracket 1, I \rrbracket} \int A_{ij}(v) \mathrm{d}v} \sum_{\boldsymbol{n} \in \llbracket 1, N \rrbracket} A_{i_{\boldsymbol{n}}j}(v_{\boldsymbol{n}}) \frac{1}{\sum\limits_{j' \in \llbracket 1, J \rrbracket} A_{i_{\boldsymbol{n}}j'}(v_{\boldsymbol{n}}) \lambda_{j'}^{(t)} + \overline{s}_{i_{\boldsymbol{n}}}(v_{\boldsymbol{n}}) + \overline{r}_{i_{\boldsymbol{n}}}} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where $y_{ib} \in \{0, 1\} \ \forall i \in [\![1, I]\!], b \in [\![1, B]\!]$ and N := Card(L)Further properties:

- Each event can be treated as a point in a continuous measurement space;
- \Rightarrow **No discretization** of data \rightsquigarrow preserve accuracy of measurement.

¹Spatial, temporal and energy data.

XEMIS2 camera & 3γ imaging

XEMIS2

A monolithic, cylindrical & total-body Compton camera: Scandium-44: (β^+, γ) radionuclide:

Assumptions

Let *M* be a decay source \Rightarrow **Compton cone**:

Apex:
$$V_1$$
;
Axis: $\Delta = \overrightarrow{V_2V_1}$;
Angle: $\theta = \arccos\left(1 - \frac{m_e c^2 E_1}{E_0(E_0 - E_1)}\right)$;

Property: *M* lies on the **Cone-Surface Response** (CSR).

Opportunity: LOR/CSR intersection;

Challenge: Reconstruct the image from a continuous 3γ signal.

Idea: continuous 3γ reconstruction as TOF-PET using block detectors.

Pseudo-TOF method:

Transform information from 3rd γ into a TOF information $\Rightarrow \mathcal{N}(v,\sigma^2)$

- v: LOR/CSR Intersection (LCI);
- σ : pseudo-TOF standard deviation.

Assumptions :

- \cdot σ is **fixed** whatever the orientation of the γ wrt. the LOR;
- · Virtual discretization of the continuous detector;
- Only 3γ events are taken into account.

Proportions of events:

$$3\gamma \sim 10\%$$
, $2\gamma \sim 50\%$, $1\gamma \sim 40\%$

Pseudo-TOF Method¹

¹Source: Giovagnoli [2020]

 $3\gamma~\sim 10\%,~2\gamma~\sim 50\%,~1\gamma~\sim 40\%$

Purpose of my PhD thesis

Design and **implementation** of reconstruction algorithms for the 3γ imaging provided by the XEMIS2 camera.

Our methodology

- · Derivation of a LM-MLEM algorithm taking into account
 - · the continuous aspect of the LXe detection space
 - handling the all types of events i.e. 1γ , 2γ or 3γ

Continuous LM-MLEM

Reformulation of the LM-MLEM in the continuous space :

$$\begin{cases} \boldsymbol{\lambda}^{(0)} = \boldsymbol{\lambda}^{(0)}_{j} > 0\\ \boldsymbol{\lambda}^{(t+1)}_{j} = \boldsymbol{\lambda}^{(t)}_{j} \times \underbrace{\frac{1}{\int_{\delta \in \mathcal{L}} A_{j}(\delta) \mathrm{d}\delta}}_{=s_{j}} \sum_{n \in \llbracket 1, N \rrbracket} A_{j}(\delta_{n}) \frac{1}{\sum_{j' \in \llbracket 1, J \rrbracket} A_{j'}(\delta_{n}) \boldsymbol{\lambda}^{(t)}_{j'} + \varepsilon(\delta_{n})} \quad \forall j \in \llbracket 1, J \rrbracket \end{cases}$$

where

 δ : integration variable associated to an **event**;

L: detection domain given by:

 1γ :a CSR with $E_0 = 511 \text{keV}$ or a CSR with $E_0 = 1.157 \text{MeV}$ 2γ :a LOR i.e. $2 \times E_0 = 511 \text{keV}$ or a 2 CSR intersection with $E_0 = 511 \text{keV} \& E_0 = 1.157 \text{MeV}$ 3γ :a combination of independent LOR & CSR.

So: there are 5 types of events to consider!

CASTOR & POLLUX

Algorithm implementation: using CASTOR¹ framework - Merlin et al. [2018];

For the time being

CASTOR is implemented for standard PET camera:

- discrete detectors;
- LOR events.

Upgrading Castor

We have to **extend** CASTOR with:

- · continuous detection space capability with associated sensitivity computation;
- a CSR projector *e.g.* Ellipse-stacking method or Ray-tracing method²;
- new types of events including 1γ for Compton imaging and 3γ .
- ⇒ Some data are required!

Hello POLLUX!

A simple **home-made** Monte Carlo simulator based on **ray-tracing** techniques with some physical considerations *e.g.* positron range, mean free path, photon cross section, ...

¹Customizable and Advanced Software for Tomographic Reconstruction

²Sources: Ellipse-stacking method - Wilderman et al. [1998], Ray-tracing method - Kim et al. [2007]

 $\begin{array}{ll} \mbox{Positron range:} & \sim \mathcal{N}(2.4,2);\\ \mbox{LXe Density:} & \rho \approx 3.06 \mbox{ g.cm}^{-3};\\ \mbox{Attenuation coeff.:} & \mu \approx 0.291 \mbox{ cm}^{-1} \mbox{ for } E_0 = 511 \mbox{keV}. \end{array}$

 \Rightarrow Evaluation of the multiples integrals with Monte Carlo calculation implemented in CASToR.

Continuous LM-MLEM :

Consider the 5 types of events in the reconstruction method;

 \Rightarrow Derivation of the maximum likelihood equation for the cases 1, 2, 3 γ ; Design of the dedicated algorithm and implementation in **CASTOR** framework; Assessment of the algorithm with simulated and real data.

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E_0 photon belonging to the voxel j in the FOV

 2γ Annihilation case

Inspiration: Maxim et al. [2015], Feng [2019] for LM-MLEM Compton reconstruction.

Let M be an emission point of a E_0 photon belonging to the voxel j in the FOV

 1γ case with incident energy E_0

MLatif

Let M be an emission point of a E_0 photon belonging to the voxel j in the FOV: